

Influência da adubação nitrogenada em genótipos de feijão-caupi porte ereto

Alismário Leite da Silva⁽¹⁾; Uasley Caldas de Oliveira⁽²⁾; Tamara Torres Tanan⁽³⁾;Marilza Neves do Nascimento⁽⁴⁾; Ronaldo Simão de Oliveira⁽⁵⁾

(1) Graduando em Engenharia Agronômica; Bolsista PROBIC/UEFS, Universidade Estadual de Feira de Santana; Feira de Santana, Bahia, alismarioagronomo@hotmail.com;

RESUMO

O experimento foi realizado com o objetivo de avaliar o efeito de diferentes doses de nitrogênio e estimar a melhor dose para a produção máxima econômica em diferentes genótipos de feijão-caupi (Vigna unguiculata (L.) Walp.). O experimento foi conduzido em casa de vegetação na Unidade Experimental Horto Florestal, pertencente à Universidade Estadual de Feira de Santana (UEFS), Feira de Santana-BA. Utilizou-se o delineamento em blocos casualizados (DBC), com quatro tratamentos (4 x 8), sendo 0, 10, 20 e 40 kg ha⁻¹ de N, duas cultivares (MNC04-762F-3, MNC04-762F-9, MNC04-769F-30, e seis genótipos MNC04-792F-148, MNC04-795F-154, MNC04-795F-155 e as cultivares BRS Novaera e BRS Cauamé). Durante a condução do experimento foram avaliados os seguintes parâmetros: diâmetro do caule (DCA), altura da planta (ALT) e ao final da colheita avaliou-se o comprimento de 5 vagens (COM5V), peso de 5 vagens (P5V), peso de grãos de 5 vagens (PG5V), número de grãos de 5 vagens (NG5V) e o índice de grãos (IG). Os genótipos MNC04-792F-148, MNC04-795F-154, MNC04-795F-155 foram influenciados pela aplicação da adubação nitrogenada, entretanto as doses acima da recomendada podem prejudicar a sua produtividade.

⁽²⁾ Mestrando em Solos e Ecossistemas; Universidade Federal do Recôncavo Baiano;

⁽³⁾ Doutoranda em Recursos Genéticos Vegetais; Universidade Estadual de Feira de Santana;

⁽⁴⁾ Professora Doutora/ Universidade Estadual de Feira de Santana;

⁽⁵⁾ Professor Doutor/ Instituto Federal Baiano

Influência da adubação nitrogenada em genótipos de feijão-caupi porte ereto

I – INTRODUÇÃO

O feijão-caupi (*Vigna unguiculata* (L.) Walp.), comumente conhecido como feijão catador, feijão-de-corda ou feijão-macassar é apontado como uma leguminosa granífera, de origem africana e pertencente à família Fabaceae (Cruz et al., 2012). Apresenta grande adaptabilidade, sendo bastante cultivado em regiões tropicais, subtropicais e semi-áridas, isso devido a sua tolerância a climas com temperaturas mais elevadas. Também possui a capacidade de fixar nitrogênio no solo, onde é capaz de nodular e estabelecer simbiose com diversas espécies de bactérias do grupo rizóbio (NEVES, RUMJANEK, 1997; WILLEMS, 2006; ZILLI et al., 2006; ZHANG et al., 2007; MOREIRA, 2008).

O feijão-caupi é utilizado em diversos arranjos no meio produtivo, pois trata-se de uma cultura de alto valor nutricional e boa aceitação no mercado. Tem grande importância para a subsistência de milhões de pessoas como alimento, além de ser fonte de emprego e renda para muitos produtores (Freire Filho et al., 2011). Dados indicam que o Brasil vem ocupando a terceira posição em relação à produção mundial de feijão-caupi, tendo seu cultivo voltado principalmente às regiões Norte e Nordeste do país (Torres et al., 2015), contudo, sua produtividade, nessas regiões, ainda apresenta baixos índices (Rocha et al., 2013). Alguns fatores são responsáveis por essa baixa produtividade, destacando-se as precipitações pluviais desuniformes, uso de cultivares tradicionais, emprego de sementes de baixa qualidade (Freire Filho et al., 2011) e a baixa disponibilidade de nutrientes no solo, principalmente o nitrogênio (N) (XAVIER et al., 2007).

O nitrogênio é um dos nutrientes que proporciona maior resposta ao feijoeiro (Vieira, 1983), sendo, por isso, o mais estudado. Sua disponibilidade é um fator limitante para o crescimento e produtividade de diversas espécies e necessitado em todas as fases do desenvolvimento vegetal (Fernandes e Rossielo, 1995, Maschner, 1995). As plantas com deficiência em N apresentam coloração amarelada e crescimento limitado. A clorose ocorre inicialmente nas folhas mais velhas, com as mais jovens permanecendo verdes, sendo que em casos de deficiências mais rigorosas, as folhas contraem coloração marrom e levadas a morte (RAIJ, 1991).

Alguns trabalhos sobre adubação nitrogenada na cultura do feijoeiro têm sido efetuados (Fageria; Baligar, 1996; Carvalho et al., 2003), no entanto, para o feijão-caupi, ainda não dispõe-se de dados concretos relacionados a espécie. Dutra et al. (2012), avaliaram a adubação nitrogenada em feijão-caupi cv. Canapuzinho com as doses de 15 e 30 kg ha⁻¹ empregadas no plantio ou em cobertura, mas não foi constatada interferência significativa na produtividade das plantas.

A correta adubação nitrogenada tem grande importância para o desenvolvimento do feijão-caupi, pois o excesso, em uma cultura leguminosa, pode reduzir a eficiência simbiótica, mas se fornecida à quantidade ideal, pode garantir o aumento nos nódulos e consequentemente uma maior fixação biológica de nitrogênio (Moura et al., 2009). Ademais, a definição de doses de N que não seja aquém ou além das reais necessidades da cultura permitirá maior receita líquida ao produtor e evitará o desperdício de adubos aplicados em excesso no solo.

Diante do exposto, percebe-se a necessidade de realização de pesquisas sobre adubação nitrogenada no feijão-caupi, tendo em vista a elaboração de uma recomendação com esse nutriente para esta cultura. Neste trabalho objetivou-se estimar a melhor dose de N para a produção máxima econômica do feijão-caupi

II - METODOLOGIA

O experimento foi conduzido em casa de vegetação na Unidade Experimental Horto Florestal, pertencente à Universidade Estadual de Feira de Santana (UEFS), Feira de Santana-BA, localizado a 12°14'21" de latitude Sul e 38°58'46" de longitude Oeste, com elevação de 258 metros de altitude. Foram avaliados 6 genótipos e 2 cultivares de feijão-caupi do tipo ereto, em um ciclo de produção, entre 2016/2017. As sementes utilizadas foram obtidas através do CPAMN (Centro de Pesquisa Agropecuária do Meio Norte), pertencente à EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária). Os genótipos utilizados foram: MNC04-762F-3, MNC04-762F-9, MNC04-769F-30, MNC04-792F-148, MNC04-795F-154, MNC04-795F-155 e as cultivares BRS Novaera e BRS Cauamé.

Utilizou-se o delineamento blocos casualizados (DBC), com quatro tratamentos e quatro repetições, sendo conduzido em vasos de polietileno de 3 dm³, totalizando 128 vasos. A semeadura foi realizada na data 06/12/2016, distribuindo-se quatro sementes por recipiente e o desbaste foi realizado oito dias após a semeadura, ficando duas plantas por cova. As doses aplicadas foram delimitadas mediante o cálculo de recomendação de adubação por meio da análise de solo (Tabela 1) e com base no Manual de Adubação e Calagem para o Estado da Bahia.

Tabela 1 - Análise química do solo utilizado no experimento na profundidade $0-20\,\mathrm{cm}$, Feira de Santana-Ba, 2016.

AMOSTRA	pН	P	K	Ca ²⁺	Mg	Na	Al	H+Al	S	CTC	V	MO
		mg/dm ⁻³	cmolc/dm ⁻³								%	g/kg
SOLO	5,7	4	0,15	1,65	0,66	0,02	0,0	1,98	2,48	4,46	56	19

H+Al – acidez potencial, CTC – capacidade de troca catiônica, MO – matéria orgânica, V% - saturação por bases.

A dose referencia utilizada foi 20 kg/ha⁻¹, no tratamento 1 não houve aplicação de N; no tratamento 2, a concentração de nitrogênio foi reduzida em 50% (10 kg/ha); no tratamento 3, a concentração de nitrogênio foi o valor de referencia (20 kg/ha); e no tratamento T4, a concentração foi aumentada em 100% (40 kg/ha). A aplicação das doses de N foi realizada 20 dias após a semeadura e utilizada como fonte nitrogenada à uréia, com 45% de nitrogênio em sua composição. Na ocasião do plantio, realizou-se a adubação com superfosfato simples e cloreto de potássio, sendo estes depositados ao fundo da cova, sendo encobertos por uma camada de terra. Durante a condução do experimento foram avaliados os seguintes parâmetros: diâmetro do caule (DCA), altura da planta (ALT) e ao final da colheita avaliou-se o comprimento de 5 vagens (COM5V), peso de 5 vagens (P5V), peso de grãos de 5 vagens (PG5V), número de grãos de 5 vagens (NG5V) e o índice de grãos (IG).

Os dados coletados foram submetidos à análise de variância com significância (P<0,05) e realizada a análise de regressão empregando o programa estatístico SISVAR® 5.3 (FERREIRA, 2008).

III - RESULTADOS E DISCUSSÃO

A análise de variância está apresentada na Tabela 2. Houve ampla variação em relação aos genótipos avaliados, verificando-se diferenças significativas para todos os parâmetros analisados (P>0,05). Em relação às dosagens de N, houve influência para a maioria das variáveis e genótipos.

As estimativas de Coeficiente de Variação (CV%) da análise dos caracteres altura da planta (ALT), diâmetro do caule (DCAULE), comprimento de cinco vagens (COMP5V) e índice de grãos (IG), apresentaram alta precisão experimental (Tabela 2). Os caracteres peso de grãos de cinco vagens (PG5V), peso de cinco vagens (P5V) e o número de grãos de cinco vagens foram classificados como baixa precisão. O alto valor do PG5V era esperado devido à natureza quantitativa desse caráter, que é altamente influenciada pelos fatores ambientais.

Tabela 2. Análise de variância para sete caracteres de genótipos de feijão-caupi cultivados sob diferentes concentrações de nitrogênio, Feira de Santana, BA, 2017.

FV	GL	QUADRADO MÉDIO								
r v		ALT	DCA	COMP5V	PG5V	P5V	NG5V	IG		
DOSE	3	4659,43**	$1,87^{ns}$	$47,16^{\text{ns}}$	498,99**	31,91**	405,19**	2011,15**		
GENÓTIPO	7	14805,16**	9,99**	687,01**	1185,50**	15,68**	681,25**	1198,30**		
GENÓTIPO*DOSE	21	35767,23**	$1,74^{ns}$	148,66**	229,22**	13,55**	160,99*	406,39 ^{ns}		
BLOCO	3	183,05 ^{ns}	4,36*	95,59 ns	382,32**	20,72**	269,93 ^{ns}	537,44 ^{ns}		
ERRO	93	343,48	1,55	61,27	90,48	5,17	88,95	326,09		
CV (%)		19,94	15,88	11,06	37,65	34,51	43,13	15,76		

Altura (ALT), Diâmetro do caule (DCA), comprimento de 5 vagens (COMP5V), peso de grãos de 5 vagens (PG5V), peso de 5 vagens (P5V), número de grãos de 5 vagens (NG5V), Índice de grãos (IG); ns = não significativo; ** = significativo a 1% de probabilidade pelo teste F; ** = significativo a 5% de probabilidade pelo teste F.

Na tabela 3, são expressos os resultados dos cinco caracteres que apresentaram significância quanto à interação (genótipo*dose). Com relação à altura das plantas, os genótipos (MNC04-762F-9) e (MNC04-792F-148) teve um melhor ajuste à curva polinomial quadrática, e para 5 a resposta foi linear. Os genótipos (MNC04-792F-148) e (MNC04-795F-154) apresentaram médias superiores com a aplicação de 10 kg ha⁻¹ de nitrogênio, demonstrando que mesmo com doses abaixo da recomendada apresentou alto desempenho, com aumento de 25,42% e 59,94%, respectivamente, com relação à dose referencia (20 kg há⁻¹).

Para o (COMP5V), o melhor ajuste para os genótipos (MNC04-792F-148) e (MNC04-795F-155) foi o linear; para o (MNC04-795F-154) e a cultivar (BRS Cauamé), quadrático (Tabela 3). Ao dobrar a dosagem de referencia para 40 kg ha⁻¹, os genótipos (MNC04-792F-148) e (MNC04-795F-154) apresentaram maior crescimento na vagem, apresentando aumento de 14,52% e 17,97%, respectivamente. No genótipo MNC04-795F-154 houve maior comprimento de vagens quando não foi aplicado o N, o que pode estar relacionado com uma maior eficiência na fixação biológica do nitrogênio.

O genótipo (MNC04-792F-148) apresentou um ajuste quadrático, e a aplicação de N aumentou o peso dos grãos, entretanto na maior dosagem (40 kg ha⁻¹) houve um decréscimo, o que pode indicar um efeito tóxico do excesso de N, observado também nos genótipos (MNC04-795F-154), (MNC04-795F-155), com uma resposta linear decrescente (Tabela 3). Barbosa et al. (2010), não observaram incrementos no peso de grãos, ao estudarem diversas doses de adubação nitrogenada (0, 30, 60, 90 e 120 kg ha⁻¹) no feijoeiro. Já Santi et al. (2006) estudando diferentes cultivares e adubação nitrogenada em feijoeiro, observaram que não há

interação entre a adubação e as cultivares, sendo que para aumento em quase 50% do rendimento dos grãos foi necessário aplicar a dose de 85 kg ha⁻¹, o que demonstra que os genótipos de feijão-caupi podem apresentar altos rendimentos sem a necessidade de aplicações de fertilizantes nitrogenados.

Tabela 3. Altura (ALT), comprimento de 5 vagem (COMP5V), peso de grãos de 5 vagens (PG5V), peso de 5 vagens (P5V), número de grãos de 5 vagens (NG5V) de genótipos de feijão-caupi cultivados sob diferentes concentrações de nitrogênio. Feira de Santana, BA, 2017.

	GENÓTIPOS										
	1	2	3	4	5	6	7	8			
Doses de Nitrogêni	0										
	Altura (cm)										
0 Kg ha ⁻¹ de N	105,25	91,50	52,25	95,99	107,37	130,76	38,00	92,69			
10 Kg ha ⁻¹ de N	112,00	110,60	53,25	162,25	161,66	111,19	43,25	132,50			
20 Kg ha ⁻¹ de N	97,00	112,50	50,25	121,00	64,75	139,75	33,75	74,50			
40 Kg ha ⁻¹ de N	99,25	85,00	55,00	70,57	97,75	131,20	44,50	97,00			
Regressão	ns	Q*	ns	Q**	L**	ns	ns	ns			
	Comprimento 5 Vagens										
0 Kg ha ⁻¹ de N	66,97	71,23	66,15	71,19	80,35	79,90	56,78	60,36			
10 Kg ha ⁻¹ de N	69,89	67,93	70,42	79,42	78,57	74,65	65,97	68,09			
20 Kg ha ⁻¹ de N	67,51	64,37	67,44	76,73	73,46	75,63	60,75	79,45			
40 Kg ha ⁻¹ de N	69,04	70,63	68,67	89,77	89,56	64,27	61,67	58,06			
Regressão	ns	ns	ns	L**	Q*	L**	ns	Q**			
	Peso de Grãos 5 Vagens										
0 Kg ha ⁻¹ de N	17,06	23,00	27,28	25,48	48,35	40,75	31,47	10,69			
10 Kg ha ⁻¹ de N	11,75	23,54	30,03	38,43	41,98	22,13	42,44	24,07			
20 Kg ha ⁻¹ de N	14,14	16,50	27,04	39,87	20,40	20,80	22,65	13,78			
40 Kg ha ⁻¹ de N	8,78	23,39	14,33	33,55	27,69	14,65	40,38	12,02			
Regressão	ns	ns	ns	Q*	L**	L**	ns	ns			
		Peso de 5 Vagens									
0 Kg ha ⁻¹ de N	4,44	5,81	7,20	6,43	11,63	10,15	8,58	3,13			
10 Kg ha ⁻¹ de N	3,02	5,83	7,95	11,15	11,01	5,60	10,60	6,41			
20 Kg ha ⁻¹ de N	3,78	4,37	6,47	10,08	5,46	5,94	6,29	4,00			
40 Kg ha ⁻¹ de N	2,31	6,09	3,68	8,36	7,86	3,82	10,70	2,71			
Regressão	ns	ns	L*	Q**	L**	L**	ns	Q*			
	Número de Grãos de 5 Vagens										
0 Kg ha ⁻¹ de N	15,00	21,33	27,50	26,25	37,25	38,75	25,75	12,00			
10 Kg ha ⁻¹ de N	8,62	15,67	26,75	24,67	39,97	20,75	31,00	21,75			
20 Kg ha ⁻¹ de N	12,17	16,00	30,25	27,33	18,67	28,70	21,50	14,00			
40 Kg ha ⁻¹ de N	8,67	19,33	15,33	28,33	23,50	7,65	24,67	10,67			
Regressão	ns	ns	ns	ns	L**	L**	ns	ns			

^{*}Os genótipos utilizados foram: 1 (MNC04-762F-3), 2 (MNC04-762F-9), 3 (MNC04-769F-30), 4 (MNC04-792F-148), 5 (MNC04-795F-154), 6 (MNC04-795F-155), e as cultivares 7 (BRS Novaera) e 8 (BRS Cauamé).

Na variável (P5V), o melhor ajuste verificado nos genótipos (MNC04-769F-30), (MNC04-795F-154) e (MNC04-795F-155) foi o linear decrescente, já no (MNC04-792F-148) e na cultivar (BRS Cauamé) foi o quadrático. A dose com 10 kg ha⁻¹ de nitrogênio propiciou um maior peso nas vagens nos genótipos (MNC04-769F-30), (MNC04-792F-148) e cultivar

(BRS Cauamé), com aumento de 18,61%, 9,59% e 37,59%, respectivamente, com relação à dose referência. Nos genótipos (MNC04-795F-154) e (MNC04-795F-155), a não aplicação de N ocasionou aumento de 53,05% e 47% com relação à dose referência.

O (NG5V) é uma variável que pode indicar produtividade e que, segundo Arf et al. (2014), pode ser influenciada pelas doses de nitrogênio aplicadas, já que uma melhor nutrição em N tende a aumentar o número de óvulos fertilizados por vagem, entretanto, para os genótipos 5 e 6, os dados se ajustaram a uma curva linear decrescente, com melhor resultado para o tratamento onde não foi aplicado N. Barbosa et al. (2010) não verificaram resultados positivos para o número de grãos por vagem, em função de diferentes doses de nitrogênio (0, 30, 60, 90 e 120 kg ha⁻¹) em dois anos de cultivo. Crusciol el al. (2003) também não observaram efeitos significativos em doses de N em cobertura.

Com exceção dos genótipos (MNC04-792F-148), (MNC04-795F-154) e (MNC04-795F-155), para os demais não houve influência da aplicação da adubação nitrogenada para a maioria dos parâmetros avaliados. Por ser uma leguminosa, e realizar simbiose com bactérias fixadoras de N, é provável que a sua demanda por N já seja alcançada, sendo a fonte nitrogenada sob forma de uréia dispensável. Brito et al. (2009) observaram que do N absorvido pelo caupi, 93% foi proveniente da fixação simbiótica, 5,8% do solo e 1,2% do fertilizante. Assim como, Alfaia (1997) também observou que o caupi absorveu mais o N por meio da fixação biológica e do solo do que pelos fertilizantes, como uréia e sulfato de amônio.

IV - CONCLUSÕES

Os genótipos (MNC04-792F-148), (MNC04-795F-154) e (MNC04-795F-155) foram influenciados pela aplicação da adubação nitrogenada, entretanto as doses acima da recomendada podem prejudicar a sua produtividade.

Recomenda-se a não aplicação da adubação nitrogenada para o cultivo do feijão-caupi, exceto para o genótipo (MNC04-792F-148), onde a aplicação de 10 kg ha⁻¹ produziu maior número de grãos e de maior massa, buscando, assim, a redução dos custos de produção e contribuindo para evitar prejuízos ao meio ambiente.

V – REFERÊNCIAS

ALFAIA, S.S. Destino de fertilizantes nitrogenados (15N) em um Latossolo Amarelo cultivado com feijão caupi (*Vigna unguiculata* L.). **Acta Amaz.**, 27:65-72, 1997.

ALVES, A. C. **Métodos para quantificar volatilização de N-NH₃ em solo fertilizado com uréia.** 2006. 41p. Dissertação (Mestrado em Zootecnia) — Faculdade de Zootecnia e engenharia de alimentos, Universidade de São Paulo, Pirassununga, 2006.

ANDRADE, F. N.; ROCHA, M. M.; GOMES, R. L. F.; FREIRE FILHO, F. R.; RAMOS, S. R. R. Estimativas de parâmetros genéticos em genótipos de feijão-caupi avaliados para feijão fresco. **Revista Ciência Agronômica**, v.41, p.253-258, 2010. DOI: 10.1590/ S1806-66902010000200012.

ARF, O.; RODRIGUES, R. A. F.; SÁ, M. E.; BUZETTI, S.; NASCIMENTO, V. Manejo do solo, água e nitrogênio no cultivo de feijão. **Pesquisa Agropecuária Brasileira**, v.39, p.131-138, 2004.

BARBOSA, G. F. et al. Nitrogênio em cobertura e molibdênio foliar no feijoeiro de inverno. **Acta Scientiarum Agronomy**, Maringá, v. 32, n. 1, p.117-123, 2010.

BRITO, M. M. P.; MURAOKA, T.; SILVA, E. C. Marcha de absorção do nitrogênio do solo, do fertilizante e da fixação simbiótica em feijão-caupi (*Vigna unguiculata* (L.) WALP.) E FEIJÃO-COMUM (*Phaseolus vulgaris* L.) determinada com uso de 15N. **R. Bras. Ci. Solo**, v. 33, p.895-905, 2009.

CARVALHO, M. A. C.; FURLANI JUNIOR, E.; ARF, O.; SÁ, M. E.; PAULINO, H. B.; BUZETTI, S. Doses e épocas de aplicação de nitrogênio e teores foliares deste nutriente e de clorofila em feijoeiro. **Revista Brasileira de Ciência do Solo**, v.27, p.445-450, 2003.

COMISSÃO ESTADUAL DE FERTILIDADE DO SOLO. **Manual de adubação e calagem para o Estado da Bahia.** 2. ed. Salvador, 1989. 176p.

CRUSCIOL, C. A. C. et al. Efeito do nitrogênio sobre a qualidade fisiológica, produtividade e características de sementes de feijão. **Revista brasileira de sementes**, Pelotas, v. 25 n. 1, p.108-115, 2003.

CRUZ, C. S. A.; PEREIRA, E. R. L.; SILVA, L. M. M.; MEDEIROS, M. B.; GOMES, J. P. Repelência do *Callosobruchus maculatus* (Coleoptera: Bruchidae) sobre grãos de feijão caupi tratado com óleos vegetais. **Revista Verde de Agroecologia e Desenvolvimento Sustentável**, 7: 01-05. 2012.

DUTRA, A. S.; BEZERRA, F. T. C.; NASCIMENTO, P. R.; LIMA, D. C. Produtividade e qualidade fisiológica de sementes de feijão caupi em função da adubação nitrogenada. **Revista Ciências Agronômica**, v. 43, n. 4, p. 816-821, 2012.

FAGERIA, N. K.; BALIGAR, V. C. Response of lowland rice and common bean grown in relation to soil fertility levels on a várzea soil. **Fertilizer Research**, Dordrecht, v.45, n.8, p.13-20, 1996.

FERREIRA, D. F. Sisvar: um programa para análises e ensino de estatística. **Revista Symposium**, Lavras, v. 6, p. 36-41, 2008.

FERNANDES, M. S.; ROSSIELLO, R. O. P. Mineral Nitrogen in Plant Physiology and Plant Nutrition. **Critical Reviews in Plant Sciences**, Boca Raton, v.14, n.2, p.111-148, 1995.

FREIRE FILHO, F. R.; RIBEIRO, V. Q.; ROCHA, M. M.; DAMASCENO E SILVA, K. J.; NOGUEIRA, M. S. R.; RODRIGUES, E. V. **Feijão-caupi no Brasil: Produção, Melhoramento Genético, Avanços e Desafios.** Teresina, PI: Embrapa Meio-Norte, 2011. 81 p.

MARSCHNER, H. **Mineral nutrition of higher plants.** London: Academic Press, 1995. 889p.

RAIJ, B. V. **Fertilidade do solo e adubação**. Piracicaba: Ceres/ POTAFOS, 1991. 343p.

ROCHA, M. M.; ANDRADE, F. N.; GOMES, R. L. F.; FREIRE FILHO, F. R.; RAMOS, S. R. R.; RIBEIRO, V. Q. Adaptabilidade e estabilidade de genótipos de feijão-caupi quanto à produção de grãos frescos, em Teresina-PI. **Revista Científica Rural**, v.14, p.40-55, 2012.

SANTOS, J. A. S.; TEODORO, P. E.; CORREA, A. M.; SOARES, C. M. G.; RIBEIRO, L. P.; ABREU, H. K. A. Desempenho agronômico e divergência genética entre genótipos de feijão-caupi cultivados no ecótono Cerrado/Pantanal. **Bragantia**, 73, p. 377-382. 2014. http://dx.doi. org/10.1590/1678-4499.0250.

SILVA, E. F.; BARROS-JÚNIOR, A. P.; SILVEIRA, L. M.; SANTANA, F. M. S.; SANTOS, M. G. Avaliação de cultivares de feijão-caupi irrigado para produção de grãos verdes em Serra Talhada-PE. **Revista Caatinga**, v.26, p.21-26, 2013.

- VIEIRA, C. Cultivo do feijão. Viçosa-MG: UFV, 1983. 146 p.
- MOURA, J. B. et al. Produtividade do feijoeiro submetido à adubação nitrogenada e inoculação com Rhizobium tropici. **Global Science And Technology**, Rio Verde, v. 2, n. 35, p.66-71, set./dez. 2009.
- NEVES, M. C. P.; RUMJANEK, N. G. Diversity and adaptability of soybean and cowpea rhizobia in tropical soils. **Soil Biology and Biochemistry**, v.29, p.889-895, 1997.
- WILLEMS, A. The taxonomy of rhizobia: an overview. **Plant and Soil**, v.287, p.3-14, 2006.
- ZILLI, J. E.; VALICHESKI, R. R.; RUMJANEK, N. G.; SIMÕES-ARAÚJO, J. L.; FREIRE FILHO, F. R.; NEVES, M. C. P. Eficiência simbiótica de estirpes de Bradyrhizobium isoladas de solo do Cerrado em caupi. **Pesquisa Agropecuária Brasileira**, v.41, p.811-818, 2006.
- ZHANG, W.T.; YANG, J.K.; YUAN, T.Y.; ZHOU, J.C. Genetic diversity and phylogeny of indigenous rhizobia from cowpea [*Vigna unguiculata* (L.) Walp.]. **Biology and Fertility of Soils**, v.44, p.201-210, 2007.
- MOREIRA, F. M. S. **Bactérias fixadoras de nitrogênio que nodulam Leguminosae.** In: MOREIRA, F. M. S.; SIQUEIRA, J. O.; BRUSSAARD, L. (Ed.). Biodiversidade do solo em ecossistemas brasileiros. Lavras: UFLA, 2008. p.621-680.
- SANTI, L. A. et al. Adubação nitrogenada na cultura do feijoeiro em plantio convencional. **Ciência Rural**, Santa Maria, v. 36, n. 4, p.1079-1085, jun./ago. 2006.
- XAVIER, T. F. et al. Ontogenia da nodulação em duas cultivares de feijão-caupi. **Ciência Rural**, v.37, p.572-575, 2007.